3.882 \(\int \frac{(e x)^{3/2}}{(a-b x^2) \sqrt{c-d x^2}} \, dx\)

Optimal. Leaf size=261 \[ -\frac{2 \sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (-\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}} \]

[Out]

(-2*c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticF[ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/
4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d])),
ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d
*x^2)/c]*EllipticPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(
b*d^(1/4)*Sqrt[c - d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.356394, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.233, Rules used = {466, 483, 224, 221, 409, 1219, 1218} \[ \frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (-\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}-\frac{2 \sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^(3/2)/((a - b*x^2)*Sqrt[c - d*x^2]),x]

[Out]

(-2*c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticF[ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/
4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d])),
ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d
*x^2)/c]*EllipticPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(
b*d^(1/4)*Sqrt[c - d*x^2])

Rule 466

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/e^n)^p*(c + (d*x^(k*n))/e^n)^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 409

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-(d/c), 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-(d/c), 2]*x^2)), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1219

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[Sqrt[1 + (c*x^4)/a]/Sqrt[a + c*x^4]
, Int[1/((d + e*x^2)*Sqrt[1 + (c*x^4)/a]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]

Rule 1218

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-(c/a), 4]}, Simp[(1*Ellipt
icPi[-(e/(d*q^2)), ArcSin[q*x], -1])/(d*Sqrt[a]*q), x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt{c-d x^2}} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{x^4}{\left (a-\frac{b x^4}{e^2}\right ) \sqrt{c-\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{e}\\ &=-\frac{(2 e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{b}+\frac{(2 a e) \operatorname{Subst}\left (\int \frac{1}{\left (a-\frac{b x^4}{e^2}\right ) \sqrt{c-\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{b}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{\sqrt{b} x^2}{\sqrt{a} e}\right ) \sqrt{c-\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{b}+\frac{e \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{\sqrt{b} x^2}{\sqrt{a} e}\right ) \sqrt{c-\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{b}-\frac{\left (2 e \sqrt{1-\frac{d x^2}{c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{d x^4}{c e^2}}} \, dx,x,\sqrt{e x}\right )}{b \sqrt{c-d x^2}}\\ &=-\frac{2 \sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\left (e \sqrt{1-\frac{d x^2}{c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{\sqrt{b} x^2}{\sqrt{a} e}\right ) \sqrt{1-\frac{d x^4}{c e^2}}} \, dx,x,\sqrt{e x}\right )}{b \sqrt{c-d x^2}}+\frac{\left (e \sqrt{1-\frac{d x^2}{c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{\sqrt{b} x^2}{\sqrt{a} e}\right ) \sqrt{1-\frac{d x^4}{c e^2}}} \, dx,x,\sqrt{e x}\right )}{b \sqrt{c-d x^2}}\\ &=-\frac{2 \sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (-\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}+\frac{\sqrt [4]{c} e^{3/2} \sqrt{1-\frac{d x^2}{c}} \Pi \left (\frac{\sqrt{b} \sqrt{c}}{\sqrt{a} \sqrt{d}};\left .\sin ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt{c-d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.041824, size = 70, normalized size = 0.27 \[ \frac{2 x (e x)^{3/2} \sqrt{\frac{c-d x^2}{c}} F_1\left (\frac{5}{4};\frac{1}{2},1;\frac{9}{4};\frac{d x^2}{c},\frac{b x^2}{a}\right )}{5 a \sqrt{c-d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*x)^(3/2)/((a - b*x^2)*Sqrt[c - d*x^2]),x]

[Out]

(2*x*(e*x)^(3/2)*Sqrt[(c - d*x^2)/c]*AppellF1[5/4, 1/2, 1, 9/4, (d*x^2)/c, (b*x^2)/a])/(5*a*Sqrt[c - d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.023, size = 415, normalized size = 1.6 \begin{align*}{\frac{\sqrt{2}e}{2\,x \left ( d{x}^{2}-c \right ) } \left ({\it EllipticPi} \left ( \sqrt{{ \left ( dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}},{b\sqrt{cd} \left ( \sqrt{cd}b-\sqrt{ab}d \right ) ^{-1}},{\frac{\sqrt{2}}{2}} \right ) ab\sqrt{cd}+{\it EllipticPi} \left ( \sqrt{{ \left ( dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}},{b\sqrt{cd} \left ( \sqrt{cd}b-\sqrt{ab}d \right ) ^{-1}},{\frac{\sqrt{2}}{2}} \right ) ad\sqrt{ab}-2\,{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{cd}}{\sqrt{cd}}}},1/2\,\sqrt{2} \right ) ad\sqrt{ab}+2\,{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{cd}}{\sqrt{cd}}}},1/2\,\sqrt{2} \right ) bc\sqrt{ab}-{\it EllipticPi} \left ( \sqrt{{ \left ( dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}},{b\sqrt{cd} \left ( \sqrt{ab}d+\sqrt{cd}b \right ) ^{-1}},{\frac{\sqrt{2}}{2}} \right ) ab\sqrt{cd}+{\it EllipticPi} \left ( \sqrt{{ \left ( dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}},{b\sqrt{cd} \left ( \sqrt{ab}d+\sqrt{cd}b \right ) ^{-1}},{\frac{\sqrt{2}}{2}} \right ) ad\sqrt{ab} \right ) \sqrt{cd}\sqrt{-{dx{\frac{1}{\sqrt{cd}}}}}\sqrt{{ \left ( -dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}}\sqrt{{ \left ( dx+\sqrt{cd} \right ){\frac{1}{\sqrt{cd}}}}}\sqrt{-d{x}^{2}+c}\sqrt{ex} \left ( \sqrt{cd}b-\sqrt{ab}d \right ) ^{-1} \left ( \sqrt{ab}d+\sqrt{cd}b \right ) ^{-1}{\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x)

[Out]

1/2*(EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))
*a*b*(c*d)^(1/2)+EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),
1/2*2^(1/2))*a*d*(a*b)^(1/2)-2*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*d*(a*b)^(1/2)+2*
EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*b*c*(a*b)^(1/2)-EllipticPi(((d*x+(c*d)^(1/2))/(c*
d)^(1/2))^(1/2),(c*d)^(1/2)*b/((a*b)^(1/2)*d+(c*d)^(1/2)*b),1/2*2^(1/2))*a*b*(c*d)^(1/2)+EllipticPi(((d*x+(c*d
)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((a*b)^(1/2)*d+(c*d)^(1/2)*b),1/2*2^(1/2))*a*d*(a*b)^(1/2))*(c*d)^(1
/2)*(-x*d/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*2^(1/2)*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1
/2)*(-d*x^2+c)^(1/2)*e*(e*x)^(1/2)/x/((c*d)^(1/2)*b-(a*b)^(1/2)*d)/((a*b)^(1/2)*d+(c*d)^(1/2)*b)/(a*b)^(1/2)/(
d*x^2-c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{\left (e x\right )^{\frac{3}{2}}}{{\left (b x^{2} - a\right )} \sqrt{-d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

-integrate((e*x)^(3/2)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{\left (e x\right )^{\frac{3}{2}}}{- a \sqrt{c - d x^{2}} + b x^{2} \sqrt{c - d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(3/2)/(-b*x**2+a)/(-d*x**2+c)**(1/2),x)

[Out]

-Integral((e*x)**(3/2)/(-a*sqrt(c - d*x**2) + b*x**2*sqrt(c - d*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{\left (e x\right )^{\frac{3}{2}}}{{\left (b x^{2} - a\right )} \sqrt{-d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(-(e*x)^(3/2)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)